导模法生长氧化镓晶体中的位错缺陷及其分布特点

导模法生长氧化镓晶体中的位错缺陷及其分布特点

摘要/Abstract

摘要: β-Ga2O3作为新一代超宽带隙半导体材料,因优异的物理性能和在器件中的高性能而受到越来越多的关注。β-Ga2O3的制备可采用浮区法、导模(EFG)法等多种熔融晶体生长方法。缺陷通常会对半导体器件的性能产生严重的负面影响,所以β-Ga2O3晶体的缺陷检测技术显得尤为重要。过去通常采用刻蚀的方法进行位错的检测和密度计算,但这种方法是破坏性的,只适用于实验样品的研究分析。本文突破传统缺陷分析方法的局限,引入X射线形貌分析术(XRT)并结合酸性腐蚀法,对导模法生长β-Ga2O3的(001)、(010)、(100)面分别进行了深入研究,揭示了位错在三维空间的分布特征,明确指出,在导模法晶体中,沿着b轴[010]方向的位错占主导地位,为理解β-Ga2O3位错的结构和特征提供了宝贵的信息,进而为之后外延和器件晶面的选择指明了新的方向。

关键词:

氧化镓,

宽禁带半导体,

位错,

X射线形貌分析术,

导模法,

腐蚀法

Abstract: β-Ga2O3, as a new generation of ultra-wide bandgap semiconductor material, has garnered increasing attention due to its exceptional physical properties and high performance in devices. Various melt crystal growth techniques, such as the floating zone method and edge-defined film-fed growth (EFG) method, can be employed for the preparation of β-Ga2O3. Defects often exert significant adverse effects on the performance of semiconductor devices (e.g., higher leakage currents and lower breakdown voltages), making defect detection techniques for β-Ga2O3 crystals particularly crucial, especially for dislocation defects within linear defects. Traditionally, etching methods were used for the detection and density calculation of dislocations, but common methods for characterizing material defects are destructive and only applicable to the research analysis of experimental samples. In this paper, X-ray topography (XRT) and acid etching were utilized to investigate β-Ga2O3 grown by EFG method on (001), (010), and (100) surface, demonstrating the three-dimensional distribution characteristics of dislocations. It is shown that dislocations along the b-axis [010] direction dominate, providing valuable insights into the structure and characteristics of β-Ga2O3 dislocations. This, in turn, offers new directions for the subsequent selection of epitaxial and device crystal orientations.

Key words:

β-Ga2O3,

wide bandgap semiconductor,

dislocation,

XRT,

EFG method,

etching method

中图分类号:

O77

TN304.2+1

引用本文

杨文娟, 卜予哲, 赛青林, 齐红基. 导模法生长氧化镓晶体中的位错缺陷及其分布特点[J]. 人工晶体学报, 2025, 54(3): 414-419.

YANG Wenjuan, BU Yuzhe, SAI Qinglin, QI Hongji. Dislocation Defects and Their Distribution Characteristics in Ga2O3 Crystal Grown by Edge-Defined Film-Fed Growth Method[J]. Journal of Synthetic Crystals, 2025, 54(3): 414-419.

使用本文

/

推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文:

http://rgjtxb.jtxb.cn/CN/10.16553/j.cnki.issn1000-985x.2024.0304

http://rgjtxb.jtxb.cn/CN/Y2025/V54/I3/414

参考文献

[1] HIGASHIWAKI M, SASAKI K, MURAKAMI H, et al. Recent progress in β-Ga2O3 power devices[J]. Semiconductor Science and Technology, 2016, 31(3): 034001.[2] CHEN X H, REN F F, GU S L, et al. Review of gallium-oxide-based solar-blind ultraviolet photodetectors[J]. Photonics Research, 2019, 7(4): 381.[3] HOU X H, ZOU Y N, DING M F, et al. Review of polymorphous Ga2O3 materials and their solar-blind photodetector applications[J]. Journal of Physics D Applied Physics, 2021, 54(4): 043001.[4] VÍLLORA E G, SHIMAMURA K, YOSHIKAWA Y, et al. Large-size β-Ga2O3 single crystals and wafers[J]. Journal of Crystal Growth, 2004, 270(3/4): 420-426.[5] ITO T, TOMIOKA Y, RACKERSEDER F, et al. Growth of β-Ga2O3 crystal with a diameter of 30 mm by laser-diode-heated floating zone (LDFZ) method[J]. Journal of Crystal Growth, 2024, 634: 127673.[6] KURAMATA A, KOSHI K, WATANABE S, et al. Bulk crystal growth of Ga2O3[C]//Oxide-based Materials and Devices IX. January 27-February 1, 2018. San Francisco, USA. SPIE, 2018.[7] AIDA H, NISHIGUCHI K, TAKEDA H, et al. Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method[J]. Japanese Journal of Applied Physics, 2008, 47(11R): 8506.[8] WANG M G, MU S, SPECK J S, et al. First-principles study of twin boundaries and stacking faults in β-Ga2O3[J]. Advanced Materials Interfaces, 2023: 2300318.[9] YAO Y Z, SUGAWARA Y, ISHIKAWA Y. Identification of Burgers vectors of dislocations in monoclinic β-Ga2O3 via synchrotron X-ray topography[J]. Journal of Applied Physics, 2020, 127(20): 205110.[10] YAO Y Z, ISHIKAWA Y, SUGAWARA Y. Slip planes in monoclinic β-Ga2O3 revealed from its {010} face via synchrotron X-ray diffraction and X-ray topography[J]. Japanese Journal of Applied Physics, 2020, 59(12): 125501.[11] HANADA K, MORIBAYASHI T, KOSHI K, et al. Origins of etch pits in β-Ga2O3(010) single crystals[J]. Japanese Journal of Applied Physics, 2016, 55(12): 1202BG.[12] ISAJI S, MAEDA I, OGAWA N, et al. Relationship between propagation angle of dislocations in β-Ga2O3 (001) bulk wafers and their etch pit shapes[J]. Journal of Electronic Materials, 2023, 52(8): 5093-5098.[13] OSHIMA T, OKUNO T, ARAI N, et al. Wet etching of β-Ga2O3 substrates[J]. Japanese Journal of Applied Physics, 2009, 48(4R): 040208.[14] LI P K, BU Y Z, CHEN D Y, et al. Investigation of the crack extending downward along the seed of the β-Ga2O3 crystal grown by the EFG method[J]. CrystEngComm, 2021, 23(36): 6300-6306.[15] NAKAI K, NAGAI T, NOAMI K, et al. Characterization of defects in β-Ga2O3 single crystals[J]. Japanese Journal of Applied Physics, 2015, 54(5): 051103.[16] OGAWA K, OGAWA N, KOSAKA R, et al. AFM observation of etch-pit shapes on β-Ga2O3 (001) surface formed by molten alkali etching[J]. Materials Science Forum, 2020, 1004: 512-518.[17] FUJIE F, PENG H Y, AILIHUMAER T, et al. Synchrotron X-ray topographic image contrast variation of screw-type basal plane dislocations located at different depths below the crystal surface in 4H-SiC[J]. Acta Materialia, 2021, 208: 116746.[18] SOUKHOJAK A, STANNARD T, MANNING I, et al. Measurement of dislocation density in SiC wafers using production XRT[J]. Materials Science Forum, 2022, 1062: 304-308.[19] YAO Y Z, TSUSAKA Y, SASAKI K, et al. Large-area total-thickness imaging and Burgers vector analysis of dislocations in β-Ga2O3 using bright-field X-ray topography based on anomalous transmission[J]. 2022, 121(1): 012105.[20] YAMAGUCHI H, KURAMATA A. Stacking faults in β-Ga2O3 crystals observed by X-ray topography[J]. Journal of Applied Crystallography, 2018, 51(Pt 5): 1372-1377.[21] SDOEUNG S, SASAKI K, KURAMATA A, et al. Identification of dislocation responsible for leakage current in halide vapor phase epitaxial (001) β-Ga2O3 Schottky barrier diodes investigated via ultrahigh-sensitive emission microscopy and synchrotron X-ray topography[J]. Applied Physics Express, 2022, 15(11): 111001.[22] YAO Y Z, ISHIKAWA Y, SUGAWARA Y. Dislocation classification of a large-area β-Ga2O3 single crystal via contrast analysis of affine-transformed X-ray topographs[J]. Journal of Crystal Growth, 2020, 548: 125825.

相关文章 15

[1]

姜博文, 纪为国, 张璐, 范骐鸣, 潘明艳, 黄浩天, 齐红基. 导模法生长β-Ga2O3晶体流场对称性研究[J]. 人工晶体学报, 2025, 54(3): 378-385.

[2]

韩宇, 焦腾, 于含, 赛青林, 陈端阳, 李震, 李轶涵, 张钊, 董鑫. 衬底晶面对MOCVD同质外延生长n-Ga2O3薄膜性质的影响研究[J]. 人工晶体学报, 2025, 54(3): 438-444.

[3]

陈俊宏, 胡鉴闻, 魏钟鸣. 基于氧化镓微纳米结构的探测器研究进展[J]. 人工晶体学报, 2025, 54(3): 491-510.

[4]

王君岚, 李早阳, 杨垚, 祁冲冲, 刘立军. 导模法生长6英寸氧化镓单晶的结晶界面变形度评估与控制研究[J]. 人工晶体学报, 2025, 54(3): 396-406.

[5]

文俊棚, 郝伟兵, 韩照, 徐光伟, 龙世兵. 氧化镍/氧化镓异质结二极管台面终端技术研究[J]. 人工晶体学报, 2025, 54(3): 517-523.

[6]

王月飞, 高冲, 吴哲, 李炳生, 刘益春. 双生长腔互联MOCVD外延生长氧化镓异质结构及其紫外光电探测器件的研究[J]. 人工晶体学报, 2025, 54(3): 426-437.

[7]

殷长帅, 孟标, 梁康, 崔翰文, 刘胜, 张召富. 采用不同辐射传热模型模拟氧化镓单晶生长热场的对比研究[J]. 人工晶体学报, 2025, 54(3): 386-395.

[8]

瞿振宇, 徐文慧, 江昊东, 梁恒硕, 赵天成, 谢银飞, 孙华锐, 邹新波, 游天桂, 齐红基, 韩根全, 欧欣. 氧化镓异质衬底集成技术研究进展[J]. 人工晶体学报, 2025, 54(3): 470-490.

[9]

陈旭阳, 李昊勃, 秦华垚, 许明耀, 卢寅梅, 何云斌. 新型亚氧化物化学气相传输工艺低成本生长β-Ga2O3厚膜[J]. 人工晶体学报, 2025, 54(3): 445-451.

[10]

孙汝军, 张晶辉, 李一帆, 郝跃, 张进成. Mg掺杂氧化镓研究进展[J]. 人工晶体学报, 2025, 54(3): 361-370.

[11]

贺松, 刘金杨, 郝伟兵, 徐光伟, 龙世兵. 台面终端氧化镓肖特基二极管单粒子效应研究[J]. 人工晶体学报, 2025, 54(3): 511-516.

[12]

王子铭, 张雅超, 冯倩, 刘仕腾, 刘雨虹, 王垚, 王龙, 张进成, 郝跃. c面蓝宝石衬底上ε-Ga2O3的金属有机物化学气相沉积[J]. 人工晶体学报, 2025, 54(3): 420-425.

[13]

严宇超, 王琤, 陆昌程, 刘莹莹, 夏宁, 金竹, 张辉, 杨德仁. 2英寸Fe掺杂高阻β相氧化镓单晶生长及(010)衬底性质研究[J]. 人工晶体学报, 2025, 54(2): 197-201.

[14]

屈珉敏, 余建刚, 李子唯, 李旺旺, 雷程, 李腾腾, 李丰超, 梁庭, 贾仁需. 新型复合终端氧化镓肖特基二极管电学特性仿真研究[J]. 人工晶体学报, 2025, 54(2): 348-357.

[15]

谢银飞, 何阳, 刘伟业, 徐文慧, 游天桂, 欧欣, 郭怀新, 孙华锐. 超宽带隙氧化镓功率器件热管理的研究进展[J]. 人工晶体学报, 2025, 54(2): 290-311.

编辑推荐

Metrics

阅读次数

全文

摘要

本文评价

相关推荐

90 年代至 2010 年代最令人怀念的 100 款电脑游戏
外勤365下载安装版本

90 年代至 2010 年代最令人怀念的 100 款电脑游戏

⌛ 07-14 👁️ 8374